Abstract
Unsymmetrical 22-oxacorrole containing two aryl groups and one pyrrole group at the meso position was synthesized by condensing one equivalent of 16-oxatripyrrane with one equivalent of meso aryl dipyromethane under mild acid-catalyzed conditions followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). This [3+2] condensation approach was expected to yield meso-free 25-oxasmaragdyrin but unexpectedly afforded unsymmetrical meso-pyrrole-substituted 22-oxacorrole. We demonstrated the versatility of the reaction by synthesizing four new meso-pyrrole-substituted 22-oxacorroles. The reactivity of α-position of meso-pyrrole was tested by carrying out various functionalization reactions such as bromination, formylation, and nitration and obtained the functionalized meso-pyrrole-substituted 22-oxacorroles in decent yields. The X-ray structure obtained for one of the functionalized meso-pyrrole substituted 22-oxacorrole revealed that the macrocycle was nearly planar and the meso-pyrrole was in the perpendicular orientation with respect to the macrocyclic plane. The meso-pyrrole-substituted 22-oxacorroles absorb strongly in 400-700 nm region with one strong Soret band and four weak Q bands. The 22-oxacorroles are strongly fluorescent and showed emission maxima at ≈650 nm with decent quantum yields and singlet-state lifetimes. The 22-oxacorroles are redox-active and exhibited three irreversible oxidations and one or two reversible reduction(s). A preliminary biological study indicated that meso-pyrrole corroles are biocompatible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.