Abstract

Abstract Magnetic gold mesoporous silica nanoparticle core shells (mAu@PSNs) were fabricated as a support and their size, morphology and structure was further characterized by X-Ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermal gravimetric analysis (TGA). Cellulase (CEL) immobilization on mAu@PSNs was performed via covalent bonding. Fourier transform infrared (FTIR) spectroscopy confirmed the successful binding of enzyme to mAu@PSNs while Bradford assay determined the binding efficiency to be 76%. The enzyme activity was measured at different pHs and temperatures by FPase method using Whatman filter paper as the substrate. The immobilized enzyme maintained 58% of its initial catalytic activity after nine hours. In this research, a new nano-system was designed as a solid support for cellulase immobilization which enhanced its thermal stability and facilitated its long term storage. In addition, the immobilized enzyme can be applied in a broader temperature and pH ranges while enzyme separation can be simply carried out by an external magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.