Abstract
A simple molybdenum-based catalytic system for hydrosilylation of allenes has been developed. The reactions of mono- and disubstituted allenes with secondary and tertiary silanes proceeded smoothly and selectively to afford linear allylsilanes. The origin of the unprecedented linear selectivity was investigated by density functional theory studies to reveal that the reaction consists of the following steps: (1) concerted hydromolybdation/Si–H oxidative addition from a Mo(CO)4/allene/silane adduct to form (π-allyl)molybdenum, (2) allyl rotation from the initially formed (π-allyl)molybdenum to a thermodynamically more stable isomer, and (3) reductive elimination at the less-hindered allyl carbon to afford a linear allylsilane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.