Abstract

Red mud (RM) is one kind of basic solid waste produced from aluminum industry. RM is usually stored by the method of land stockpiling, which has caused serious environmental and safety issues. Bittern, a by-product of salt manufacture, is abundant in China. But the utilization rate is low, less than 20%. The disposal of waste bittern has become a challenge that attracts much attention in water industry. In this article, Mg/Al/Fe layered double hydroxides (Mg/Al/Fe-LDHs) were synthesized using the above two wastes by a coprecipitation method and characterized by X-ray diffraction (XRD) and scanning electron microscopy. The XRD results showed that LDHs were successfully synthesized. Then, the flame-retardant properties and thermal properties of Mg/Al/Fe-LDHs in ethylene vinyl acetate (EVA)/LDHs composites had been tested by cone calorimeter test (CCT), limiting oxygen index (LOI), smoke density test (SDT), and thermogravimetry–Fourier transform infrared spectrometry (TG-FTIR). The CCT results showed that the heat release rate (HRR) of the EVA/LDHs composites significantly decreased in comparison with that of pure EVA, and EVA2 sample showed the lowest peak value of HRR value of 204.59 kW m−2. The LOI results showed that EVA3 had a highest LOI value of 28.3% in all the samples. The SDT test indicated that Mg/Al/Fe-LDHs were beneficial to the smoke suppression performance of EVA composites. TG-IR results showed that EVA/LDHs composites had better thermal stability than EVA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.