Abstract

Phosphorescence colors of cyclodextrin-based insulated Pt-acetylide complexes were tuned by the molecular engineering of the chromophores. A series of Pt complexes bearing various acetylide ligands, including heteroaromatics, were prepared via self-inclusion of the linked macrocycles with the complexes. The decline in the inclusion efficiency derived from the heteroaromatics was overcome by the late-stage insulation via intramolecular slippage after the construction of the Pt-acetylide complexes. The cyclic protection of the thus-formed complexes prevented phosphorescence quenching via molecular interactions, even in the solid state. Accordingly, the tuned emission colors in a dilute system were replicated in the solid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.