Abstract

This text presents a method for the synthesis of In37P20(O2C14H27)51 clusters and their conversion to indium phosphide quantum dots. The In37P20(O2CR)51 clusters have been observed as intermediates in the synthesis of InP quantum dots from molecular precursors (In(O2CR)3, HO2CR, and P(SiMe3)3) and may be isolated as a pure reagent for subsequent study and use as a single-source precursor. These clusters readily convert to crystalline and relatively monodisperse samples of quasi-spherical InP quantum dots when subjected to thermolysis conditions in the absence of additional precursors above 200 °C. The optical properties, morphology, and structure of both the clusters and quantum dots are confirmed using UV-Vis spectroscopy, photoluminescence spectroscopy, transmission electron microscopy, and powder X-ray diffraction. The molecular symmetry of the clusters is additionally confirmed by solution-phase 31P NMR spectroscopy. This protocol demonstrates the preparation and isolation of atomically-precise InP clusters, and their reliable and scalable conversion to InP QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.