Abstract

AbstractHydroxyapatite (HAp)/poly(vinyl alcohol phosphate) (PVAP) nanocomposite has been prepared using a solution‐based method varying HAp from 10 to 60% (w/w). X‐ray diffraction, Fourier transform infrared absorption spectra (FTIR), and thermal analysis have indicated the presence of bonding between HAp particles and PVAP matrix. Transmission electron microscope analysis shows the needle‐like crystals of HAp powder having a diameter of 6–10 nm and a length of 26–38 nm. The surface roughness and the homogeneous dispersion of HAp particles in the polymer matrix have been observed by scanning electron microscopy. Particle size distribution analysis shows the narrow distribution of hydrodynamic particles in the polymer matrix. The tensile stress–strain curves show the improvement in mechanical properties of the composites with increase in amount of HAp particles loading. The composites along with polymer are highly hemocompatible. The use of PVAP promotes the homogeneous distribution of particles on the polymer matrix along with strong particle–polymer interfacial bonding, which has supported the improvement in mechanical properties of the composites. The prepared HAp/PVAP composite with uniform microstructure would be effective to act as a potential biomaterial. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.