Abstract

Hollow molybdenum-dopamine spheres were synthesized and thermally annealed to form hollow Mo2C/C spheres. The morphology, composition and electrochemical behavior of spheres were characterized. A glassy carbon electrode (GCE) was modified with the spheres and then used for simultaneous detection of hydroquinone (HQ), catechol (CC), and resorcinol (RS). Distinct oxidation peaks can be observed for HQ, CC and RS at potentials of -0.004V, 0.10V and 0.44V (vs. SCE). The responses to HQ, CC and RS are linear in the concentration ranges of 0.3~1000μM, 2~2000μM and 3~600μM, respectively. The corresponding detection limits are 0.12, 0.19 and 1.1μM (at S/N = 3). The sensor was then applied to quantify HQ, CC, and RS in tap water, river water and vegetable juice. Recoveries ranged from 93.5% to 106.5%. The modified GCE is repeatable, reproducible, stable and selective for HQ, CC and RS. Graphical abstract Schematic presentation of a novel electrochemical sensor based onaglassy carbon electrode modified with hollow Mo2C/ carbon spheres for determination of hydroquinone, catechol, and resorcinol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.