Abstract
Highly active self-cleaning surfaces were prepared from hydrothermally treated TiO2 nanomaterials for different times (0, 12, 24 and 36h) under acidic condition. TiO2 thin films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). TiO2 thin film (hydrothermal 24h) exhibited hybrid morphology from accumulated plates, clusters, rods and spheres. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the hydrothermally treated for 24h at 200°C. The structural, morphology and photoactivity properties of nano-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) from highly active TiO2 thin film surface was applied. Moreover, the durability of this nano-TiO2 thin film (hydrothermal 24h) was studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.