Abstract

Diamond-like Carbon (DLC) for IR antireflective properties is currently being used in the coating of germanium based IR optics. These DLC coatings offer better wear resistance as compared to traditional anti-reflective (AR) coatings. The current work emphasizes the development of IR optics using germanium substrate coated with DLC which typically covers IR transmission in wavelength regions like 3–7μm and 9–15μm. In order to study IR transmission, an optimum film thickness of DLC was calculated and coated on a double sided polished germanium substrate. DLC was coated on a single side of a germanium substrate, as well as on both sides of germanium. DLC has been deposited using Radio Frequency Plasma Enhanced Chemical Vapour Deposition (RF-PECVD) at room temperature without the use of any intermediary buffer layers required for adhesion and high hardness values were achieved at room temperature as compared to existing literature. The transmission of IR through DLC coated germanium windows was measured using Fourier Transform Infra-Red (FTIR) spectroscopy. A comparison between transmission through a single side and double sided DLC coating on germanium has been demonstrated. The hardness of the film was measured using nanoindentation. Scratch test was also performed using nanoindentation. Adhesion and salt spray tests were performed as per MIL standards. With double sided DLC coating, a peak transmission value of 93% is achieved in 3–7μm and the average hardness of DLC is measured to be 32.74GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.