Abstract

Magnetic graphene foams with three-dimensional (3D) porous structure, low bulk density and multiple electromagnetic loss mechanisms have been widely recognized as the potential candidates for lightweight and high-efficiency microwave attenuation. Herein, zinc ferrite hollow microspheres decorated nitrogen-doped reduced graphene oxide (NRGO/ZnFe2O4) composite foams were prepared via a solvothermal and hydrothermal two-step method. Results demonstrated that the attained magnetic composite foams possessed the ultralow bulk density (12.9–13.5 mg·cm−3) and 3D hierarchical porous netlike structure constructed through stacking of lamellar NRGO. Moreover, the microwave dissipation performance of binary composite foams could be notably improved through annealing treatment and further elaborately regulating the annealing temperature. Remarkably, the attained composite foam with the annealing temperature of 300.0 °C presented the integrated excellent microwave attenuation capacity, i.e. the strongest reflection loss reached −40.2 dB (larger than 99.99% absorption) and broadest bandwidth achieved 5.4 GHz (from 12.4 GHz to 17.8 GHz, covering 90.0% of Ku-band) under an ultrathin thickness of only 1.48 mm. Furthermore, the probable microwave dissipation mechanisms were illuminated, which derived from the optimized impedance matching, strengthened dipole polarization, interfacial polarization and multiple reflection, notable conduction loss, natural resonance and eddy current loss. Results of this work would pave the way for developing graphene-based 3D lightweight and high-efficiency microwave absorption composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.