Abstract

We describe a new method for directly synthesizing a hazard-free multilevel logic implementation from a given logic specification. The method is based on free/ordered Binary Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel logic network that is hazard-free for a specified set of multiple-input changes. We assume an arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit multiple-input changes, and we consider both static and dynamic hazards under the fundamental-mode assumption. Our framework is thus general and powerful. While it is not always possible to generate hazard-free implementations using our technique, we show that in some cases hazard-free multilevel implementations can be generated when hazard-free two-level representations cannot be found. This problem is generally regarded as a difficult problem and it has important applications in the field of asynchronous design. The method has been automated and applied to a number of examples. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.