Abstract

Bacterial cell wall peptidoglycan (PGN) is a potent immunostimulator and immune adjuvant. The PGN of Gram-negative bacteria and some Gram-positive bacteria contain meso-diaminopimelic acid (meso-DAP), and we have recently shown that the intracellular protein Nod1 is a PGN receptor and recognizes DAP-containing peptides. In this study, we achieved the synthesis of DAP-containing PGN fragments, including the first chemical synthesis of tracheal cytotoxin (TCT), GlcNAc-(beta1-4)-(anhydro)MurNAc-L-Ala-gamma-D-Glu-meso-DAP-D-Ala, and a repeating-unit of DAP-type PGN, GlcNAc-(beta1-4)-MurNAc-L-Ala-gamma-D-Glu-meso-DAP-D-Ala. For the synthesis of PGN fragments, we first established a new synthetic method for an orthogonally protected meso-DAP derivative, and then we constructed the glycopeptide structures. The ability of these fragments to stimulate human Nod1, as well as differences in Nod1 recognition of the variety of synthesized ligand structures were examined. The results showed that the substitution of the N terminus of iE-DAP is necessary for stronger Nod1 recognition, but the structure of the substituent seems not to be strictly recognized. The importance of the carboxyl group at the 2-position of DAP for human Nod1 stimulation was also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.