Abstract

Abstract Cu-doped Li2O, synthesized by mechanochemical reactions between Li2O and CuO, is demonstrated as a cathode material for lithium-ion batteries. The X-ray diffraction and absorption analyses suggest that in the Cu-doped Li2O, Cu2+ ions are located at 48g sites less symmetrical than 8c sites for Li+ ions, distorting the arrangement of surrounding O2− ions slightly from tetrahedral to square-planar, while the Cu2+ ions are doped in an antifluorite-type Li2O. The Cu-doped Li2O cathode has a charge capacity of 360 mAh g−1 without an irreversible O2 gas evolution reaction and exhibits a reversible capacity of 300 mAh g−1. Cu K-edge XANES spectroscopy and quantitative analysis of peroxide species reveal that redox of copper ions, formation/neutralization of O 2p electron holes, and generation/annihilation of peroxide species take place during charge/discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.