Abstract

In this paper, a carbon-supported binary FeCo–N/C catalyst using tripyridyl triazine (TPTZ) as the complex ligand was successfully synthesized. The FeCo–TPTZ complex was then heat-treated at 600 °C, 700 °C, 800 °C, and 900 °C to optimize its oxygen reduction reaction (ORR) activity. It was found that the 700 °C heat-treatment yielded the most active FeCo–N/C catalyst for the ORR. XRD, EDX, TEM, XPS, and cyclic voltammetry techniques were used to characterize the structural changes in these catalysts after heat-treatment, including the total metal loading and the mole ratio of Fe to Co in the catalyst, the possible structures of the surface active sites, and the electrochemical activity. XPS analysis revealed that Co–N x , Fe–N x , and C–N were present on the catalyst particle surface. To assess catalyst ORR activity, quantitative evaluations using both RDE and RRDE techniques were carried out, and several kinetic parameters were obtained, including overall ORR electron transfer number, electron transfer coefficient in the rate-determining step (RDS), electron transfer rate constant in the RDS, exchange current density, and mole percentage of H 2O 2 produced in the catalyzed ORR. The overall electron transfer number for the catalyzed ORR was ∼3.88, with H 2O 2 production under 10%, suggesting that the ORR catalyzed by FeCo–N/C catalyst is dominated by a 4-electron transfer pathway that produces H 2O. The stability of the binary FeCo–N/C catalyst was also tested using single Fe–N/C and Co–N/C catalysts as baselines. The experimental results clearly indicated that the binary FeCo–N/C catalyst had enhanced activity and stability towards the ORR. Based on the experimental results, a possible mechanism for ORR performance enhancement using a binary FeCo–N/C catalyst is proposed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.