Abstract

This article presents results of carbon nanotubes synthesis from household high-density polyethylene waste by thermal decomposition. A specific feature of this work is that the decomposition of high-density polyethylene waste and synthesis of carbon nanotubes were carried out in one-step using three-zone chemical vapor deposition reactor. The effect of temperature in the range of 450‒550 °C on decomposition products of high-density polyethylene was investigated. The decomposition products of polyethylene wastes were investigated by IR Fourier spectroscopy. Cenospheres obtained from ash and slag waste from thermal power plants during coal combustion were used as a catalyst for the synthesis of carbon nanotubes. The cenospheres were impregnated with an aqueous solution of iron nitrate. It was found that as a result of thermal decomposition of high-density polyethylene waste at temperature of 450 °C, gaseous carbon-containing compounds are formed, which upon further heating to 800 °C lead to the formation of carbon nanotubes with a diameter of 16‒21 nm on the surface of catalyst. Physicochemical analysis showed that turbostratic carbon is almost completely absent in the formed product. Carbon nanotubes analysis was performed by scanning electron microscopy and Raman spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.