Abstract

The construction of heterojunction is an effective strategy for the design of novel photocatalysts. In this study, the heterojunction of BiOCl/Bi3NbO7 for the photodegradation of organic pollutants was successfully fabricated through the in-situ chemical etching. The obtained photocatalysts were characterized via various characterization techniques. The results showed that the size and morphology of the composite material could be adjusted by the reaction time. Besides, enlarging the specific surface area of the composites can effectively increase the adsorption of organic compounds. In-situ chemical etching can not only reduce the size of Bi3NbO7 particles and the photogenerated carrier transport distance but also make BiOCl/Bi3NbO7 have a tight linkage interface and strong interaction force, which can effectively separate electron-hole pairs. Compared with pure Bi3NbO7 or BiOCl, BiOCl/Bi3NbO7 heterostructures exhibited better photocatalytic performance for the photodegradation of typical antibiotics and dyes. B/BN-160 can almost completely degrade CIP in 120 min and 50 mg· L -1 of RhB in 50 min. This work provides a novel idea for the preparation of photocatalysts and promotes their applications in the industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.