Abstract

PSS). MeS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solutions. The ultraviolet-ozone (UV-O3) treatment on MeS2 leads to the removal of the surface contaminants produced by the transfer process, resulting in a uniform surface and an increase of the work function. The maximum luminance efficiencies of the OLEDs with UV-O3-treated MoS2 and WS2 were 9.44 and 10.82 cd/A, respectively. The power conversion efficiencies of OPV cells based on UV-O3-treated MoS2 and WS2 were 2.96 and 3.08%, respectively. These values correspond to over 95% of those obtained with ( PSS) based devices. Furthermore, OLEDs and OPV cells based on MeS2 showed two to six times longer stability in air compared with PSS based devices. These results suggest that UV-O3-surface-treated MeS2 could be a promising candidate for a charge transport layer in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.