Abstract

ABSTRACTSulfonated poly(amide‐imide) (SPAI) copolymer was synthesized, characterized, and blended into poly(ether sulfone) (PES)/dimethylacetamide casting solutions to prepare ultrafiltration membranes. Different weight ratios of the copolymer (0–10 wt %) were mixed in the PES casting solution. The analyses of contact angle and attenuated total reflection‐Fourier transform infrared spectra were used to study hydrophilicity and physicochemical properties of the membrane surface, respectively. The membranes were further characterized by scanning electron microscopy images, ultrafiltration performance, and fouling analyses. The outcomes showed that addition of the SPAI in the PES matrix improved considerably the membranes hydrophilicity. Moreover, with increasing SPAI concentration, the porosity, flux recovery ratio, and pure water permeability of the modified membranes were improved. The pure water flux was increased from 3.6 to 12.4 kg/m2 h by increasing 2 wt % SPAI. The antifouling property of the modified PES membranes against bovine serum albumin, tested by a dead‐end filtration setup revealed that bovine serum albumin rejection of the obtained membrane was also enhanced and the antifouling properties of the blending membranes were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46477.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.