Abstract

A synthetic model glycoprotein was successfully synthesized using gelatin and mono-6-para-toluenesulfonyl-β-cyclodextrin which were reacted under microwave conditions in basic media. The resulting glycoprotein is observed to form intermolecular inclusion complexes through complexation of the aromatic moieties along the polymer chain by the attached cyclodextrins. This phenomenon was analyzed and proven by 2D NMR spectroscopy (ROESY) and dynamic light scattering (DLS). Above the denaturation temperature, a strong increase of the hydrodynamic diameter was found due to enhanced supramolecular agglomeration. Such a novel glycoprotein with supramolecular self-recognition would be promising in biomedical applications serving as a drug-delivery basis polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.