Abstract

ABSTRACTVia salt inclusion methods, we have recently isolated a new class of transitionmetal-containing hybrid solids that consist of a composite structure of covalent and ionic lattices. These new solids can be synthesized by conventional high-temperature, solid-state methods employing reactive molten alkali and alkaline-earth metal halide salts. Single crystal structure studies have revealed fascinating extended salt lattices that exhibit structural directing effects that give rise to a variety of nano-structured covalent oxide frameworks. Depending upon the composition of incorporated salt and the coordination environment of halide anions, resulting covalent lattices range from sheets, clusters, to porous structures. Due to the weak interaction between the two chemically dissimilar lattices, the salt lattice, in some cases, is removable showing reversible salt-intercalation at room temperature. In this report, we will demonstrate the utilities of salt-inclusion reactions in the formation of metal-oxide nanostructures in the selected compound families. We will also give some highlights on the recent discoveries of non-centrosymmetric solids via newly exploited salt-inclusion methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.