Abstract

Poly(A)+RNA from phenol-extracted rat liver polysomes was translated in a heterologous cell-free system derived from wheat germ. The RNA stimulated the incorporation of [35S]methionine into proteins 20- to 30-fold. The labeled translation products were incubated with an antiserum against cytochrome c oxidase. After binding of the antigen x immunoglobulin complex to and elution from protein A-Sepharose and sodium dodecyl sulfate (SDS)-polyacrylamide step gel electrophoresis, autoradiography was carried out. Mainly one major protein with an apparent molecular weight of 19,500 was visualized. When the unlabeled individual cytochrome c oxidase subunits IV, V, VI, or VII, isolated from preparative SDS-polyacrylamide gels, were added to the translation mixture, it was found that only subunit IV could compete with the in vitro-synthesized protein of 19.5 kilodaltons in respect to the binding to the cytochrome c oxidase antiserum. The in vitro-synthesized product was 3,000 daltons larger than the cytochrome c oxidase subunit polypeptide IV. It is concluded that the subunit IV is synthesized as a precursor. Evidence for the precursor form was obtained from translation experiments with [35S]methionine bound to a specific initiator tRNA which led to a radioactively labeled product of identical electrophoretic mobility as the 19.5 kilodalton protein. Furthermore, two dimensional tryptic fingerprints of subunit IV and its precursor show a high degree of similarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.