Abstract
Herein, a straightforward method for the synthesis of 2,5-disubstituted selenophenes via [2+2+1] cyclization of easily accessible terminal alkynes and elemental selenium has been developed. This reaction features high atom- and step-economy, excellent regioselectivity, good functional group tolerance and the use of stable and non-toxic selenium as a selenium source. A series of control experiments suggests that the reaction might undergo Glaser coupling reaction of two molecules of alkynes, followed by insertion of H2Se and subsequent cyclization. Moreover, the newly formed products can be further converted to diverse conjugated selenophene-based derivatives, demonstrating their potential applications in organic synthesis and materials science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.