Abstract

High-density monoclinic β-Ga2O3 nanowires were synthesized by a vapor transport method with controlled ambient oxygen. The structures and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). X-ray diffraction and HR-TEM analysis indicate that the as-grown β-Ga2O3 nanowires are single crystals with monoclinic structure. Intense four-band emissions covering the range from ultraviolet (UV) to visible were observed in photoluminescence (PL) spectra at room temperature. The main emission bands of deep blue (3.04 eV) to green (2.37 eV) for β-Ga2O3 nanowires were adjusted by controlling the partial pressure of oxygen. This work demonstrates a low-cost and facile process for optoelectronics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.