Abstract

Synthesis, crystallographic characterization, spectroscopic (FT-IR) and density functional modelling studies of a new Schiff base E-2-ethoxy-4-[(4-ethoxyphenylimino)methyl]phenol C17H19NO3 have been reported. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state has been compared using Hartree–Fock (HF) and density functional theory (DFT), B3LYP and B1B95 functional with the 6-311++G(d,p) basis set. In addition to the optimized geometrical structures, atomic charges, molecular electrostatic potential (MEP), natural bond orbital (NBO), nonlinear optical (NLO) effects and thermodynamic properties of the compound have been investigated by using DFT calculations. The electronic properties of the title compound in solvent media were also examined using the DFT calculations. The potential energy surface (PES) scans about important torsion angles are performed by using B3LYP/6-311++G (d,p) level of theoretical approximation for the compound. The experimental (FT-IR) and calculated vibrational frequencies (using DFT calculations) of the title compound have been compared. The predicted NLO properties of the compound which calculated by the B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets are greater than ones urea. The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.