Abstract

The synthesis, design and operation optimization of the marine energy system for a Liquefied Natural Gas (LNG) vessel is performed in this study. A realistic problem is formulated based on a detailed thermoeconomic model of the energy system components and the production of boil-off gas from the LNG cargo, which is used as the main fuel of the system. The time varying operation requirements of the vessel are identified and the problem is solved in a time dependent form. A novel optimization algorithm is used based on social and evolutionary metaphors. The results indicate that the duration of the trip (route) of the vessel has a significant effect on the optimum synthesis of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.