Abstract

A new Schiff base ligand H2L (3,5-dibromosalicylaldehyde pyridine-2-formyl hydrazone) and a new tetra-nuclear coordination complex [Mn4(L)4(DMF)4] (1) have been synthesized and characterized by spectral method (IR), fluorescence spectra, and elemental analysis. Structural characterization of the complex has been done by single-crystal X-ray diffraction analysis. Structural analysis reveals that the metal centers in complex [Mn4(L)4(DMF)4](1) exhibit distorted tetragonal-bipyramid coordination geometry, and each metal ion is coordinated by two mutually perpendicular Schiff base ligands (H2L) and one solvent DMF. The molecular dynamics (MDs) simulations method was performed to study the adsorption behavior of the H2L molecules on metal surface. The results show that the H2L molecules could adsorb on the metal surface firmly through several reactive sites. The analysis of pair correlation functions indicates that chemical bonds are formed between the oxygen nitrogen atoms of H2L molecules and the Fe atoms of Fe surface. These cause the result that H2L molecules interact with metal surface strongly and therefore have excellent corrosion inhibition performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.