Abstract

AbstractIn this work, cyclotetravanadate Na2SrV4O12 was synthesized at a relatively low sintering temperature of ∼500°C using a solid‐state reaction method. X‐ray diffraction and a transmission electron microscope characterization featured a tetragonal structure that was built by a 3D frame of isolated tetracyclic (V4O12)4−. Dielectric measurements demonstrated strong dependence on frequency and temperature. A low relative permittivity of εr ∼ 8 ± 0.2 and a dielectric (loss tanδ) ∼ 0.4 ± 0.01 was achieved at a frequency of 10 kHz and room temperature. ac impedance and conductivity analysis revealed a thermally activated migration behavior of charge carriers with a short‐range hopping feature. XPS analysis validated the existence of oxygen vacancy and reduction in vanadium (from V5+ to V4+), which gave rise to charged lattice defects. The migration or hopping of such charged defects was responsible for the observed electrical behaviors. Owing to the simple composition, inexpensive raw materials and low density (2.99 g/cm3) make Na2SrV4O12 ceramic a potential candidate for lightweight devices and in photocatalytic degradation and all‐solid‐state ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.