Abstract
AbstractConductive flexible films are successfully synthesized from polyvinyl alcohol matrix and poly(aniline‐co‐carbazole) charge carrier. To improve the mechanical properties of polyvinyl alcohol and promote charge transition in the conductive copolymer, dual purpose sulfonated multiwall carbon nanotube is added. Conductivity is enhanced via sulfonic acid protonic dopant and mechanical property is increased by its hexagonal nanorods. Nanocomposites are prepared by adding 0.025, 0.050, and 0.075 g of carbon nanotube which is added at 1%, 3%, and 5% loads to the polymer matrix. Films are characterized by infrared, UV–vis, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. Conductivity is measured by the four‐probe technique and mechanical property is assessed through tensile tests and dynamic mechanic thermal analysis. A 5 × 10−6 S cm−1 conductivity and 116 MPa tensile strength are recorded for the conductive film with optimum dopant/nanocomposite loads. The electrochemical property and corrosion resistance are studied by cyclic voltammetry and Tafel curves, respectively. The conductive films show an increase in corrosion potential and a decrease in corrosion current referring to a reliable corrosion protection film. The water uptake and contact angle of the films are measured to be 157% and 80.1° respectively to confirm its required hydrophilic property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.