Abstract

The aim of this work was to prepare nanoparticles bearing sugar residues at their surface through the synthesis of amphiphilic block copolymer of poly d,l-lactide (PLA) and poly(ethylene glycol)methacrylate, with the hydrophilic part terminating with glucopyranoside molecules as a model for any carbohydrate ligand. The construction was achieved by a combination of click chemistry, ring-opening polymerization, and atom transfer radical polymerization. The modified monomer and resulting copolymer were characterized by NMR, SEC, and FTIR. Nanoparticles with a mean hydrodynamic diameter of <200 nm as determined by quasi-elastic light scattering were prepared from the amphiphilic copolymer by nanoprecipitation using dimethylformamide (DMF) as water-miscible solvent. In the range of 2.5–10 mg copolymer/mL DMF, the polymer concentration did not have much effect on the size of the nanoparticles. Accessibility of glucopyranoside molecules on the surface of the nanoparticles was confirmed by formation of aggregates from nanoparticles in the presence of concanavalin A observed by transmission electronic microscopy. Finally, no significant cytotoxicity toward human umbilical vein endothelial cells was detected for the final nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3178–3187, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.