Abstract

Three new μ‐iodanilato‐bridged binuclear iron(III) complexes were synthesized and characterized, namely [Fe2(IA)(Me2phen)4](ClO4)4 (1), [Fe2(IA)(Ph2phen)4](ClO4)4 (2), and [Fe2(IA)(Phphen)4]‐(ClO4)4 (3), where IA represents the dianion of iodanilic acid; Me2phen, Ph2phen, and Phphen denotes 2,9‐dimethyl‐1,10‐phenanthroline; 4,7‐diphenyl‐1,10‐phenanthroline or 5‐phenyl‐1,10‐phenanthroline, respectively. Based on elemental analyses, molar conductivity and room‐temperature magnetic moment measurements, IR and electronic spectral studies, it is proposed that these complexes have extended IA‐bridged structures consisting of two iron(III) ions, each in a distorted octahedral environment. The complexes (1) and (2) were further characterized by variable‐temperature (4.2–300 K) magnetic susceptibility measurements and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, Ĥ = −2JŜ 1 Ŝ 2, giving the exchange parameter J = −9.21 cm−1 for (1) and J = −10.85 cm−1 for (2). These results are commensurate with weak antiferromagnetic spin‐exchange interaction between the two iron(III) ions within each molecule. The influence of halogen substituents in the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is preliminarily discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.