Abstract

A new series of homo- and heteropolynuclear copper(II) complexes of N,N″-bis[1-biphenyl-2-hydroxyimino-2-(4-acetylanilino)-1-ethylidene]-diamines have been prepared and characterized by different physical techniques. The starting point of the research was the reaction of chloroacetyl chloride with biphenyl in the presence of aluminum chloride. 4-Biphenylhydroximoyl chloride was obtained by reacting synthesized 4-(chloroacetyl)biphenyl with alkyl nitrite. Substituted 4-(alkylaminoisonitrosoacetyl) biphenyl (ketooxime) was prepared by reacting 4-biphenylhydroximoyl chloride with 4-aminoacetophenone in EtOH. Homodi-, homotrinuclear and heterodinuclear copper(II) perchlorate complexes of tetradentate Schiff bases which possess N4 donor sets derived from the condensation of 4-(arylaminoisonitrosoacetyl)biphenyl and diamine derivatives were synthesized and characterized. Elemental analysis, FT-IR, ESR, molar conductivity, magnetic moment measurements and thermal analyses studies were utilized for the investigation of the complexes. The free ligands were also characterized by 1H- and 13C-NMR spectra. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal:ligand ratio of dinuclear copper(II) complexes were found to be 2: 1 while this ratio was 3: 2 in trinuclear copper(II) complexes and the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms. The extraction abilities of the novel ligands were also evaluated in chloroform by using several transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+. It has been observed that both ligands show a high affinity to Cu2+ ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.