Abstract

Wound healing properties of some herbs have been known for decades. Recently, electrospun mats have been used as a wound dressing material due to the high surface area of fiber and ease of incorporation of drug into the fiber matrix. In this aspect, the incorporation of herbal extracts in electrospun matrix could provide synergistic effect for wound healing. In the present work, extracts from Cissus quadrangularis (CQ) and Galinsoga parviflora Cav (GP) were loaded into the PVA solution in different proportions. These solutions were used to produce nanofibrous mat in electrospinning and the characteristics of the mat were analyzed. The morphology of the fiber was analyzed using scanning electron microscope (SEM), the presence of functional groups was identified using Fourier transform infrared spectroscopy (FTIR). The result of drug release shows that the GP extract loaded PVA nanofibrous mat has sustained drug release of 28% after 8 h of incubation compared to CQ loaded PVA nanofibrous mat. This trend follows as the concentration of GP increases in the mixture. The antimicrobial efficiency of the prepared mat was evaluated against both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus. The prepared nanofibrous mat has shown excellent antibacterial activity, cell viability, hemocompatibility, and sufficient tensile properties which indicates that it could be a promising biomaterial for wound dressing application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.