Abstract

The Zn-doped SnO2 nanoparticles synthesized by the chemical co-precipitation route and having dopant concentration varying from 0 to 4at%, were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) for structural and morphological studies. XRD analyses reveal that all the samples are polycrystalline SnO2 having tetragonal rutile structure with nanocrystallites in the range 10–25nm. The TEM images show agglomeration of grains (cluster of primary crystallites). A corresponding selected area electron diffraction pattern reveals the different Debye rings of SnO2, as analyzed in XRD. Alcohol sensing properties of all the Zn-doped samples were investigated for various concentrations of methanol, ethanol and propan-2-ol in air at different operating temperatures. Among all the samples examined, the 4at% Zn-doped sample exhibits the best response to different alcohol vapors at the operating temperature of 250°C. For a concentration of 50ppm, the 4at% Zn-doped sample shows the maximum response 85.6% to methanol, 87.5% to ethanol and 94.5% to propan-2-ol respectively at the operating temperature of 250°C. A possible reaction mechanism of alcohol sensing has been proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.