Abstract

ABSTRACTA series of pyridine clubbed 1,3,4-oxadiazole derivatives were efficiently synthesized, characterized by standard spectral techniques and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis (MTB) H37Ra and Mycobacterium bovis BCG in active and dormant state using an established methods. Compounds 5a, 5m, and 5t were identified as the most active compounds against MTB. Molecular docking was performed against MTB enoyl-ACP (CoA) reductase (FabI/ENR/InhA) enzyme to predict the binding modes and affinity. The theoretical predictions from molecular docking could establish a link between the observed biological activity and the binding affinity shedding light into specific bonded and non-bonded interactions influencing the activity. The active compounds were studied for cytotoxicity against three cell lines and were found to be non-cytotoxic. Specificity of these compounds was checked by screening them for their antibacterial activity against four bacterial strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.