Abstract

Photolysis of 5-benzyl-2-methoxy-2,5-dimethyl-Δ3-1, 3,4-oxadiazoline and of the 5,5-dibenzyl analogue with 300-nm light afforded 1-phenyl-2-diazopropane and 1,3-diphenyl-2-diazopropane, respectively. The diazoalkanes were intercepted, in situ, with dimethyl acetylenedicarboxylate to afford 3-benzyl-4,5-bis(methoxycarbonyl)-3-methyl-3H-pyrazole and 3,3-dibenzyl-4,5-bis(methoxycarbonyl)-3H-pyrazole, respectively. Those pyrazoles are short-lived under the reaction conditions and undergo two major reactions. Photolysis prior to rearrangement affords the corresponding 3,3-dialkyI-1,2-bis(methoxycarbonyl)-cyclopropenes. Thermal 1,5-benzyl migration converts the two 3H-pyrazoles in part into the corresponding 4H-pyrazoles, which undergo photolysis to 2,3-dialkyl-1,3-bis(methoxycarbonyl)cyclopropenes. Thermolysis of the 3,3-dialkyl-1,2-bis(methoxycarbonyl) cyclopropenes affords conjugated dienes, presumably through the sequence cyclopropene → vinyl carbene → diene. The stereochemistry of the dienes was determined and a mechanism consistent with that stereochemistry is proposed. The 2,3-dialkyl-1,3-bis(methoxycarbonyl)cyclopropanes are very stable under conditions that convert isomeric 3,3-dialkyl-1,2-bis(methoxycarbonyl)cyclopropenes to conjugated dienes. It is proposed that the effect of substitution pattern on the thermolysis rate constants is the result of combined ground state and transition state factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.