Abstract

Copper (I) guanidinate dimers were generated by a salt metathesis route and structurally characterized. The guanidinates differed from the known amidinate dimers because of a large torsion of the dimer ring. This had a direct effect on their thermal chemistry. The thermal reactivity was investigated by several methods, including a novel temperature-resolved, gas-phase method that was monitored by mass spectrometry. The copper guanidinates underwent carbodiimide deinsertion to produce copper metal at temperatures between 225 -and 250 degrees C in the gas phase and at 125 degrees C in solution. The amidinate investigated also showed copper deposition at 190 degrees C in the gas phase, and 135 degrees C in solution, but without carbodiimide deinsertion. The guanidinate compounds deposited crystalline copper at 225 degrees C in a simple chemical vapor deposition experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.