Abstract

AbstractAt present, Polylactic acid (PLA) is one of the most used biodegradable polyesters. The good properties and its biodegradability make that PLA can replace the fossil fuel derived polymers in different applications. PLA can be synthesized by using different methodologies. Among them, the most widely used forms on an industrial scale are the direct polycondensation of Lactic acid and the ring-opening polymerization of cyclic Lactide. The final properties of the obtained PLA are dependent on the used stereoisomers of the raw materials (Lactic acid and/or Lactide) and the conditions employed to polymerize them. Therefore, the comprehension of the synthetic mechanism of PLA is crucial to control the stereoregularity of PLA, which in turn results in an improvement of the polymer properties. So, distinct mechanisms for the synthesis of PLA by ring-opening polymerization using different catalysts systems (organometallic catalysts, cationic catalyst, organic catalyst, bifunctional catalysts) are examined in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.