Abstract

Condensation of 5-hetarylidene-2,2-dimethyl-1,3-dioxane-4,6- diones with 5,5-dimethyl-3-arylamino-2-cyclohexanones yields 1-aryl-4-hetaryl-7,7-dimethyl-2,5- dioxo-l,2,3,4,5,5,7,8-octahydro-quinolines. The structures of all the synthesized compounds have been verified by IR, 1H-NMR, 13C-NMR, and mass spectral methods. The 13C-NMR assignments were supported by HSQC and HMBC experiments. Moreover, spin decoupling and NOE experiments have been carried out in order to elucidate stereoisomeric configurations of the compounds. It has been established that the N-phenyl ring, which projects from the plane of the octahydroquinolinedione ring, has a shielding effect on the magnetic field of the protons at 7- and 8-positions of the ring in the molecules of the compounds synthesized. The NMR spectra were recorded on a Varian Gemini spectrometer [400 MHz (1H) and 100 MHz (13C)]. EI mass spectra were obtained with a Hewlett Packard GC/MS 6890/5973 machine. MALDI-TOF mass measurements were recorded on a Bruker auto-flex III smart beam. Various reaction conditions were applied in order to find an optimum and convenient procedure for the formation of octahydroquinoline derivates having hetaryl group. The highest yields (40-50 %) were achieved using acetic acid as solvent, p-toluenesulphonic acid as acidic catalyst, and excess enaminone (1.5 equiv). We synthesized eight new 1-aryl-7,7-dimethyl-4-hetaryl-1,2,3,4,5,6,7,8-octahydroquinoline- 2,5-dione compounds containing thienyl core as a result of Michael addition reaction of Knoevenagel products of Meldrum's acid with dimedone enaminone compounds. Optimum circumstances were established using various reaction conditions and catalyzers throughout the research. The structures of all the synthesized compounds were analyzed by IR, 1H-NMR, 13CNMR, and mass spectral methods. Furthermore, the structures were verified with the help of 2D (HSQC and HMBC), spin decoupling, and NOE NMR techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.