Abstract

High energy mechanical milling was used to fabricate nanoparticulate Si using Al2O3 grinding media. Two ratios of grinding media to charge of 5 and 10 were used with milling times, such as 7, 10, 13, 16, and 19 h. Morphology of the milled powders was investigated by scanning and transmission electron microscopy. Crystallinity of the milled powders was found to be preserved for all milling conditions without amorphization. Crystallite size of the milled powders was calculated from x-ray diffractograms by various methods. From morphology and crystallite size it was observed that 13 h of milling is the optimum time to produce well dispersed Si nanoparticulates. Further increase in milling duration clearly indicated agglomeration of the powders and cold welding of the crystallites for samples of both media-to-charge ratios. X-ray diffractograms and Raman spectrographs of the milled samples were used to calculate the strain induced in the materials, which indicated progressive increase in strain with milling duration. The results indicate that Al2O3 milling media can be used with optimized process conditions for the production of large quantities of nanoparticulate Si.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.