Abstract

Two Schiff base fluorescein probes (FDA, FDH) based on fluorescein-aldehyde and nitroaniline derivatives were synthesized. The effects of amino and hydrazine substituents in fluorescein backbones were examined via fluorescence and absorbance spectra. In the presence of Ce4+, the fluorescence of FDA was quenched due to the ligand to metal charge transfer (LMCT). Hypochloric acid can react with the CN bond, and blocking the photo induced electron transfer (PET) of FDH leads to enhancement of the fluorescence. FDA showed detection limits for Ce4+ and OCl- as low as 63 nM in concentration range of 0-4 μM. FDH showed detection limits for OCl- as low as 0.8 μM in concentration rang 0-100 μM. Polyvinylidene fluoride (PVDF) membrane containing the probes was prepared for the real-time qualitative detection of Ce4+ and OCl- in real water samples. The probes were successfully applied to biological imaging in vascular smooth muscle cells (VSMCs) and are expected to find applications in biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.