Abstract

The ligand 1,1,3,3-tetramethylbutylisocyanide, CNCMe2CH2CMe3, i.e. t-octylisocyanide, with Co(ClO4)2 · 6H2O or Co(BF4)2 · 6H2O in ethanol, produces pentakis(alkylisocyanide)cobalt(II) complexes, [Co(CNC8H17-t)5](ClO4)2 (1) and [Co(CNC8H17-t)5](BF4)2 · 2.0H2O (2). These Co(II) complexes undergo reduction/substitution upon reaction with trialkylphosphine ligands to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2]ClO4 (3), [Co(CNC8H17-t)3{P(C4H9-n)3}2]BF4 (4), and [Co(CNC8H17-t)3{P(C3H7-n)3}2]ClO4 (5). Complex 3 is oxidized with AgClO4 to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2](ClO4)2 (6). Complex 1 yields [Co(CNC8H17-t)4py2](ClO4)2 (7) upon dissolving in pyridine. Reactions with triarylphosphine and triphenylarsine ligands were unsatisfactory. The chemistry of 1 and 2 is therefore more similar to that of Co(II) complexes with CNCMe3 than with CNCHMe2, other alkylisocyanides, or arylisocyanides, but shows some behavior dissimilar to any known Co(II) complexes of alkylisocyanides or arylisocyanides. Infrared and electronic spectra, magnetic susceptibility, molar conductivities, and cyclic voltammetry are reported and compared with known complexes. 1H, 13C, and 31P NMR data were also measured for the diamagnetic complexes 3, 4, and 5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.