Abstract

We describe the parallel synthesis, photocontrollable surface tension, and antibacterial performance of a new class of carbohydrate fluorosurfactant. Novel fluorosurfactants comprised a mono- or disaccharide head group linked to an azobenzene unit that was variably substituted with a trifluoromethyl group. Fluorosurfactants were rapidly assembled using the venerable CuI-catalysed azide–alkyne cycloaddition reaction and exhibited light-addressable surface activity, excellent water solubility, and selective antibacterial activity against Gram-positive Staphylococcus aureus. Notably, the physicochemical and biological activity of these novel materials was heavily dependent on the nature of the head group and the position of the trifluoromethyl substituent on the azobenzene ring. The UV-adapted cis-isomer of fluorosurfactants displayed good thermal stability at ambient temperature, with little reversion to the stable trans isomer after 16 h. These novel, light-responsive materials should find broad interest in a range of biomedical and technological fields, including drug and gene delivery, self-cleaning oleophobic surfaces, and antibacterial coatings for medical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.