Abstract

Fluorine-doped Tl(1223) superconductors were prepared starting from mixtures of oxides (carbonates) and fluorides (in particular TlF) under moderately high gas pressure (50 bar). The thermodynamics of the phase formation were found to be modified so that the melting point was lowered and the region where a liquid phase coexists enlarged. 90% phase purity was obtained for bulk materials with the composition , prepared by a two-step synthesis including TlF among the starting materials. The critical temperature remained approximately the same as for F-free samples , but a remarkable increase of the irreversibility line was observed below 75 K. The samples showed superconducting properties even for the highest amount of fluorine introduced (about one atom per formula unit). Ag-sheathed tapes were prepared by the conventional PIT method, using ex situ reacted Tl(1223) powders or producing the reaction in situ. Transport critical current densities of about were measured. This value is slightly lower than generally observed for F-free samples, but the magnetic-field dependence was slightly improved. The tape anisotropy could be increased to a factor of 2.5 by performing cycles of mechanical pressing and heating above the formation temperature. The results (in particular neutron scattering diffraction) indicate that, with high-pressure synthesis, F remains in the sample and substitutes for O in the TlO layers in the Tl(1223) phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.