Abstract

Biodegradable polymers, as well as polymers produced from renewable feedstocks, are attracting increasing interests as possible substitutes for conventional plastics: a higher energy efficiency in synthesis and processing steps must be continuously pursued in order to maximize the intrinsic environmental benefits brought by this class of materials. Microwave assisted organic synthesis (MAOS) is nowadays a major topic in green chemistry and a great (yet rising) number of papers can already be found that report striking advantages over conventional thermal heating. Nonetheless microwave (MW) energy sources are recently being chosen also for several polymerization reactions. Indeed, reduced heating times and superior homogeneity provided by MW reactors may play a central role in optimizing production processes, with a dramatic improvement in the environmental performance. In the introduction of this chapter we’re briefly recalling some theoretical principles of microwave-matter interaction; several experimental setups are then examined and, eventually, thermal and non-thermal specific microwave effects are described and commented. The following paragraph is dedicated to a comprehensive survey of synthesis examples found in scientific literature and categorized by polymerization technique, in which particular relevance is given to products of increasing commercial importance like poly(e-caprolactone) (PCL) and poly(lactic acid) (PLA). A third part of the chapter deals with the employment of microwave heating for chemical modification and processing of polymers; the last paragraph summarizes advantages and drawbacks of microwave assisted polymer chemistry, stressing the energy efficiency topic and drawing conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.