Abstract

Polycrystalline ferrierite/alumina composite membranes were prepared by a vapor-phase transport method. Pervaporation of m-xylene and 1,3,5-triisopropylbenzene was then used to evaluate the compactness of the membranes. Permeation measurements were carried out for hydrogen, helium, methane, n-butane, i-butane and sulfur hexafluoride at 300–375 K. Ideal selectivities and the mixed gas separation factors were compared. The separation factor of butane isomers depended on the compactness of the membrane. The separation factor of n-butane/ i-butane was as high as 40–70 at 375 K, and no detectable permeation flux of m-xylene was observed at 303 K. Separation of a 25/75 p-xylene/ m-xylene mixture was also performed at 303 K using pervaporation. The permeation of p-xylene was detectable, whereas that of m-xylene was below the detection limit of the experiment. The separation factor of p-xylene to m-xylene was greater than 16, which is much higher than the value of 1.0 expected from the vapor–liquid equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.