Abstract

We propose an algorithm for efficient threshold network synthesis of arbitrary multi-output Boolean functions. The main purpose of this work is to bridge the wide gap that currently exists between research on the development of nanoscale devices and research on thedevelopment of synthesis methodologies to generate optimized networks utilizing these devices. Many nanotechnologies, such as resonant tunneling diodes (RTD) and quantum cellular automata (QCA), are capable of implementing threshold logic. While functionally correct threshold gates have been successfully demonstrated, there exists no methodology or design automation tool for general multi-level threshold network synthesis. We have built the first such tool, ThrEshold Logic Synthesizer (TELS), on top of an existing Boolean logic synthesis tool. Experiments with about 60 multi-output benchmarks were performed, though the results of only 10 of them are reported in this paper because of space restrictions. They indicate that up to 77% reduction in gate count is possible when utilizing threshold logic, with an average reduction being 52%, compared to traditional logic synthesis. Furthermore, thesynthesized networks are well-balanced, and hence delay-optimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.