Abstract

The widespread global COVID-19 pandemic due to the lack of specific treatment and the urgent situation requires the use of all resources to remedy this scourge. The current study aimed to use molecular docking tools to find potential drug candidates for treatment. The pyrano[2,3-c] pyrazole 5(a-e) was targeted against the Main protease (Mpro), which plays a vital role in the replication and transcription of the Corona viral genome. The 3CL Protease (PDB ID 6LU7) was modeled, and the compounds were docked using Autodock Vina software, and ADMET data have been studied. All synthesized compounds were well engaged into the active site of the main protease with strong hydrogen bond interaction and a good score of energy. The 5b have been classed as the best inhibitor with an energy score of -6.2 kcal/mol, similar to the one given by chloroquine (-6.2Kcal/mol). Moreover, the molecular interaction studies showed that protease structure had multiple active site residues for all studied compounds. Our finding confirms the potential of these derivatives as lead compounds against the selected target protein of coronavirus, which needs further analysis and dynamic simulation studies to propose then develop a new antiviral treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.