Abstract

Future advanced electric power systems will have practically all loads interfaced to energy sources through power electronics equipment. Furthermore, all alternative, sustainable, and distributed energy sources, as well as energy storage systems, can be only connected to electric grid through power electronics converters. This will require new concepts for electronic control of all power flows in order to improve energy availability, power density, and overall energy and power efficiency in all electrical systems, from portable devices to cars, airplanes, ships, homes, data centers, and the power grid. Starting from the example of a computer power system, the paper contemplates possible future ac and dc electronic power system architectures, which fully decouple the dynamics between sources, distribution system, and loads by using separate source-, load-, and distribution-converters. Several ideas and possible methodologies for modeling, analysis, and system-level design of such systems, including power flow control, protection, stability, and subsystem interactions, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.