Abstract

We disclose the syntheses of ethyl and tert-butyl esters of 4-chloro-PyMTA and 4-iodo-PyMTA from the commercially available chelidamic acid monohydrate in 39–67% overall yield. Additionally, ester hydrolyses with aqueous NaOH (ethyl esters) or trifluoroacetic acid (tert-butyl esters) are reported. The resulting materials contain 4-halo-PyMTA in mixture with partially deprotonated or partially protonated 4-halo-PyMTA. The ligand content expressed as the content of the common structural motifs of the present species, namely [PyMTA – 4 H+]4– (basic hydrolysis) and PyMTA (acidic hydrolysis), was determined to be 90–94 wt % by 1H NMR spectroscopy using maleic acid as an internal standard. The tert-butyl esters were easily hydrolyzed with aqueous alkali hydroxide, with a decreasing rate in the series NaOH, KOH, LiOH. This finding indicates a Lewis acid assisted ester cleavage with the Na+ ion fitting best to the multidentate ligand. Unexpectedly, PyMTA esters are incompatible with Cu(I/II) salts in the presence of oxygen. Under these conditions, one of the two aminomethyl groups is converted into a formyl group. This reaction not only limits the application of Cu(I/II)-catalyzed reactions but also necessitates trapping of any copper ions (e.g., with a metal ion scavenger) before the material is exposed to oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.